

sales@mabel-tech.com 52 Bar Yehuda St. - Nesher נשר ,25דרך בר יהודה

info@mabel-tech.com Phone: +972-4-8571119 :04-8571119טלפון

 Fax: +972-4-8570307 :04-8570307פקס

AAnnddrrooiidd IInntteerrnnaallss aanndd

EEmmbbeeddddeedd

Course 203 – 40 Hours

Overview

Android provides a rich application framework that allows you to build innovative

apps and games for mobile devices in a Java and native languages. We can also find

Android OS on many embedded systems as a good replacement to Embedded Linux.

Using android as an “improved Linux” saves time because you get all you need out of

the box (libraries, packages, data services, etc.)

This course covers the internal side of android from top to bottom. You’ll learn how

to use android in an embedded environment, how to access hardware and handling

interrupts all over the android stack, and how data flows from the java application

down to the kernel driver and the hardware.

Course Objectives

 Understanding the android stack

 Learn how to use android effectively in embedded/real-time systems

 Learn how to add kernel module in android

 Learn how to add native components

 Learn how to add system services

 Learn how to create a system/user app

Who Should Attend

The course is designed for android developers (also beginners) who want to learn

android internals and to create and customize an android ROM, and embedded Linux

developers who want to migrate to an embedded system on android.

Prerequisites

Delegates should have a working knowledge in C/C++/Java/C#. (at least one)

Course Contents

Android Overview
 Overview

 Android history

 Android stack

 Writing Applications

 components

 Activities

 Intents

 Broadcast receivers

 Content Providers

 GUI basics, resources

sales@mabel-tech.com 52 Bar Yehuda St. - Nesher נשר ,25דרך בר יהודה

info@mabel-tech.com Phone: +972-4-8571119 :04-8571119טלפון

 Fax: +972-4-8570307 :04-8570307פקס

 manifest file

 Processes and threads

 Examples

Android Stack
 Android Linux Kernel Layer

 Binder

 Ashmem

 Pmem/ION

 Wakelock

 Early Suspend

 Alarm

 Low Memory Killer

 Logger

 Alarm

 Paranoid Network Security

 Other Kernel Changes

 Real time requirements and RT-patch

 Android User-Space Native Layer

 Overview

 Bionic (libc)

 User-space Hardware Abstraction Layer (HAL)

 Native Daemons: ueventd, servicemanager, vold, netd, rild,

mediaserver, keystore, racoon, zygote, system_server, adbd,

surfaceflinger, etc.

 Function libraries: libwebcore (Web Kit), V8, SQLite, libssl

(OpenSSL), etc.

 Android Runtime / Dalvik Virtual Machine

 Real – time requirements

 Android Application Framework Layer

 Overview

 Managers and Services

 Overview of system services and how to use them

 The binder IPC

 The system server and service manager

Android Native Development Kit (NDK)
 What is in NDK?

 Why NDK?

 Java Native Interface (JNI)

 Using NDK

 NDK and JNI by Example

 NDK’s Stable APIs

sales@mabel-tech.com 52 Bar Yehuda St. - Nesher נשר ,25דרך בר יהודה

info@mabel-tech.com Phone: +972-4-8571119 :04-8571119טלפון

 Fax: +972-4-8570307 :04-8570307פקס

Inter Process Communication (IPC) with Android Binder and AIDL
 Why IPC?

 What is Binder?

 What is AIDL?

 Building a Binder-based Service and Client by Example

 Async-IPC via Binder by Example

Android Security
 Android Security Architecture

 Application Signing

 User IDs

 File Access

 Using Permissions

 Permission Enforcement

 Declaring Custom Permissions

 Custom Permissions by Example

 Encryption in java and native code

Android Startup
 Bootloading the Kernel

 Android’s init Startup

 Startup of daemons

 Zygote Startup

 System Server Startup

 Startup of system services

 Startup of applications

Customizing Android
 Setting up Custom Device

 The Build System

 Adding a Custom Kernel

 Adding a custom driver

 Integrating with ueventd

 Adding a Custom Native Library and Executable

 Exposing our Native Library via Java (i.e. JNI)

 Consuming our a Custom Java/JNI, Native Library via a Custom App

 Exposing our Custom Library via a Custom IPC/Binder Service

 Building a Custom App Using a Custom Service Manager

 Creating a full system service

 Handling interrupts at any layer

 Debugging code in AOSP (application and libraries)

